

EFFECTS OF HYDROGEN ON TANTALUM NITRIDE RESISTORS

IMAPS SoCal'99

James Weiler

RF Electronic Parts Engineering Specialist

May 12, 1999

OUTLINE

- INTRODUCTION
- HYPOTHESIS
- SUPPORTING DATA
- SOURCES OF HYDROGEN
- **POSSIBLE SOLUTIONS** PALLADIUM-HYDROGEN CATALYTIC REACTION
- SUMMARY

INTRODUCTION

- Part Type: Multichannel Microwave Integrated Circuit (MIC) Hybrid Microelectronic Filter Module for Space Flight Application
- Analog Hybrid: Thin-Film Alumina Substrate, Dual Transistor, Op-Amp, Hesistors Digital-Frequency Converter, Diode Chips, Chip Capacitors, Chip
- Drift Reported in Static Frequency Output from Analog Circuit
- Outputs Returned to Normal When Covers Were Removed or Punctured from Hybrid Modules and +125C Burn-in During +125C Burn-in of Hermetically Sealed Hybrid Section

FILTER MODULE PHOTO

INITIAL FINDINGS

- circuit hybrid section isolated the drift to the hybrid section of Design Review of Filter Module by Parts Engineer of RF lumped element filters, detector and analog/digital
- sensitivity to output frequency drift. circuit in a hermetic test evaluation circuit and determine Empirical Circuit Analysis, modify sections of analog
- RGA Testing
- Failed Internal Water Vapor Content Requirement: Module 1 = 6.8%, Module 2 = 8% (>5% Max)
- Hydrogen: 1930ppm, 4036ppm respectively
- 80% Nitrogen, 20% Helium
- Performance Improved Significantly) 150 Hour High Temperature Humidity Test (Electrical

INITIAL FINDINGS

- 72 Hour Vacuum Bake Followed By Sealing RGA Holes (Electrical Performance Normal for all Channels)
- 160 Hour Burn-in @ +85C, DC Bias (1 of 7 channels drifted slightly)
- 96 Hour Bake @ +93C (all channels drifted)
- RGA Testing
- Met Internal Water Vapor Content Requirement: 1.7%
- Hydrogen: 1776ppm

INDENTIFICATION OF PROBLEM

- MAT02 matched dual NPN transistor to be very sensitive Resistors that set the bias voltage for each side of a LM194 or a Empirical Circuit Analysis Identified two 35k ohm Tantalum Nitride
- would result in the observed frequency output drifts Computer circuit simulation confirmed this finding. A 20 ohm differential shift in the set resistance values between the 2 chips
- EDAX Analysis of the 35k ohm thin film Tantalum Nitride chip resistors identified Palladium in the film.
- atomic hydrogen A catalytic reaction of Palladium and Hydrogen produces mono
- 24 hours. Some channels drifted in a similar pattern witnessed earlier. gas mixture @ 25°C and monitored the electrical performance for Filled the filter module cavities with a 4% Hydrogen, 96% Nitrogen
- An internal visual and EDAX analysis was performed at the conclusion of this testing. Confirmed Palladium on chip resistors.

X-RAY EDS OF TANTALUM NITRIDE RESISTOR

Electronic Parts Engineering

HYPOTHESIS

- and plated parts and into the air inside each hybrid MIC module +125ºC, hydrogen was desorbed out of the Kovar carriers, epoxy When burn-in was performed on hermetically sealed filters at
- 35k ohm Tantalum Nitride resistors subsequently resulted in slight A catalytic reaction between the hydrogen and the palladium in the
- in very large changes in the static output frequency of the filter Due to the design of the analog section, these slight shifts resulted shifts in their resistance values module channels

SUPPORTING DATA

- Moisture Final RGA test: 1776ppm Hydrogen, 97.8% Nitrogen, 1.57%
- Electron Dispersion X-Ray Detector (EDAX) identified Palladium in Tantalum Nitride resistor films.

POST 96 HOUR BAKE RGA DATA

\Box
V
\mathbf{q}
IT(
30
98
H

0.1775% (1776 PPM)

Nitrogen

97.8073%

Moisture

Oxygen

1.5681% (pass, <5%)

0.2258% (2258 PPM)

Carbon Dioxide

0.1397% (1397 PPM)

Argon

0.0218% (218 PPM)

MEK

0.0540% (540 PPM)

Hydrocarbon

0.0057% (57 PPM)

DRY AIR

Oxygen (O2)	Nitrogen (N2)
20.95%	78.09%

Argon 0.93% CO2 0.03%

Neon 0.0018% Helium 0.00052%

Methane (CH4) 0.00011%

0.0001% **0.00005**%

≤0.00005%

(0.5 PPM)

0.0000087%

Xenon

Ozone (O3)

Hydrogen (H2)

Krypton

≤0.00005%

≥0.0000007%

0.0000003%

SO2

N20

CO

Nitric Oxide, Nitrogen Dioxide, Formaldehyde, Ammonia (NH3)

Effects of Hydrogen, SoCal'99

INITIAL RGA TEST DATA

GAS
DETE
CTED
MOD

DULE 1

MODULE 2

Hydrogen Nitrogen

0.4036% (4036ppm) **0.1930**% (1930ppm)

Helium

65.7737%

77.6249%

Moisture

23.6097% 7.9643%

6.7730%

7.7489%

CO₂

1.8147%

1.4550%

Oxygen

2747ppm

5.7011%

MEK

886ppm

779ppm

Argon

248ppm

3933ppm

Other: Hydrocarbon, Krypton, THF (all <156ppm)

Effects of Hydrogen, SoCal'99

X-RAY EDS OF RESISTOR CHIP IN HYBRID

SOURCES OF HYDROGEN

- cores. (Cold Rolled Steel, Kovar, Invar) imperfections, grain boundaries, precipitate interfaces, dislocation Ferrous Metal Package Materials, trapped in metal at structural
- Gold and Nickel Plating Process.
- Microwave Absorbers (powdered iron filings suspended in a carrier such as silicone rubber)
- Epoxy is suspected as a source
- Capacitors, Circulators, Isolators, Ferrite Pucks, Circuit Substrates, Resistors and Metal Films may be sources.

SIGNIFICANT INFORMATION

- channel or a shift in barrier height. Semiconductors this results in compensation of donors in the Research theory assumes a catalytic reaction with Palladium and molecular Hydrogen forming mono atomic hydrogen. In GaAs
- A 10 to 20 ohm delta shift in resistance value between the two 35k ohm tantalum nitride resistors will result in the observed output drift
- Modifications as a result of this study, using a center tapped dual seal vacuum bake and the addition of a hydrogen getter. molybdenum, improved electrical grounding, proper 24 hour pretantalum nitride resistor, replacement of Kovar carrier with
- hermetic cavity Static output frequency has stabilized by a factor >100 times and there is no longer any frequency drift during burn-in testing of the

CORRECTIVE ACTION

- Change Kovar carriers to Copper-Molybdenum.
- which can maintain hydrogen levels to <1 PPM and the dew point Add Hydrogen Getter from Allied Signal Aerospace (HMC Getter) <-100ºC
- Open package thermal treatment bake-out at 100 to 110°C.
- Perform 24 hour Vacuum Bake at +85°C prior to welding cover over module in a dry Nitrogen/Helium gas environment
- Lower Burn-In temperature to +85^oC.
- a dual center tap resistor. Replace the two 35k ohm single chip Tantalum Nitride resistors with
- Locate resistors from a supplier that does not use Palladium in their process
- seal process and screening tests Maintain hybrid module temperature below +85°C during all post

SUMMARY

- Isolated Failure Mechanism
- Developed a Hypothesis
- Supported Hypothesis
- Modified Hybrid Design in Accordance With Hypothesis and Other Problems With Circuit.
- Demonstrated new circuit design was now stable
- hydrogen desorbed inside a hermetic microelectronic hybrid device. Identified new concern with tantalum nitride chip resistors for